

AGRICULTURAL METEOROLOGY IN TURKEY

Dr. Osman ŞİMŞEK

TURKISH STATE METEOROLOGICAL SERVICE
RESEARCH DEPARTMENT
Agricultural Meteorology Division

February 2014

AGRICULTURAL METEOROLOGY

Studies in Agricultural Meteorology Division

- Agricultural Forecast and Warnings
- Drought Monitoring
- Forecasting of Harvest Date
- Frost Forecast and Warnings (ZDUS)
- Crop Monitoring and Yield Forecasting
- Irrigation Planner System (SUBİS)
- Normal Maps of Grass Reference ETo
- Phenological Observations
- Heat and Hardiness Zone
- Agrometeorological Bulletin

AGRICULTURAL FORECAST AND WARNINGS

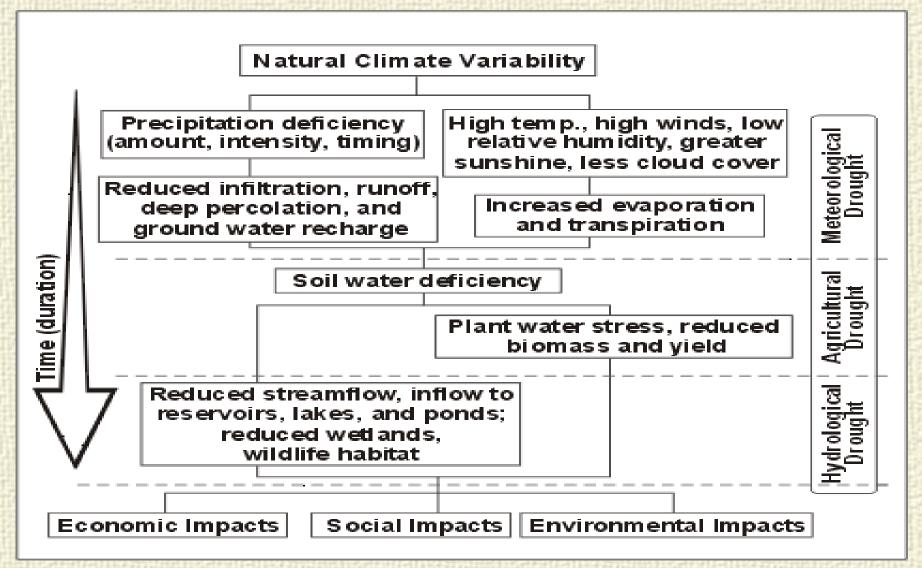
Usage Areas of Agricultural Forecast

- 1. Sowing Planting
- 2. Agricultural protection against diseases and pests
- 3. Drying
- 4. Stocking, Storage and Transport
- 5. Frost and Preventing Its Harms
- 6. Forest Fires
- 7. Irrigation
- 8. Agricultural Aviation

AGRICULTURAL FORECAST AND WARNINGS

Map of Nine (9) Agricultural Regions

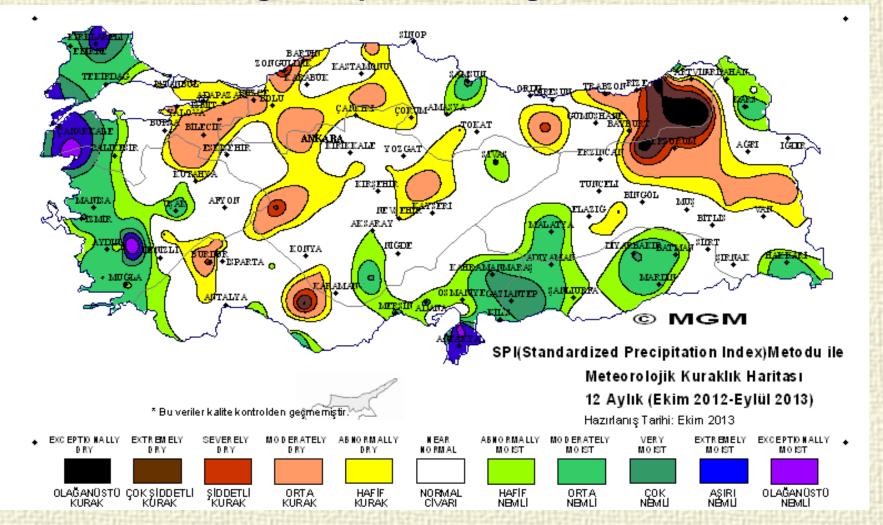
AGRICULTURAL FORECAST AND WARNINGS



- Forecast which is produced by "Analysis and Numerical Forecast Division" helps to us in preparing 5-Days Forecast.
- ➤ The products of that division are weekly map and reports, Kalman temperature analysis, Meteograms, wind maps and MM5 maps.
- Long term normal and extreme values are used in order to realize comparative analysis.

Types and Impacts of Drought

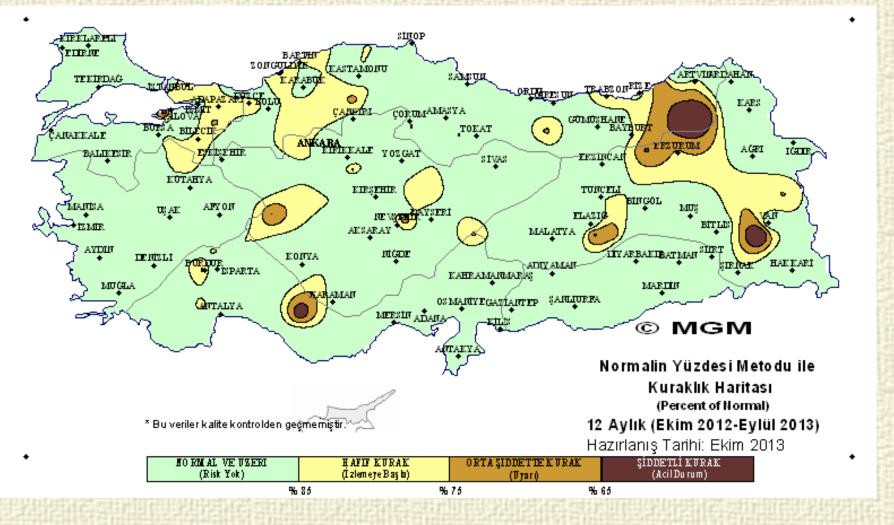
Standardized Precipitation Index (SPI)


It is a drought index which can consider variance of precipitation shortage in different time periods (1, 3, 6, 9, 12, 24, and 48 months). Monthly precipitation arrays for at least 30 years are prepared, and SPI values are normalized. Then, dry and humid periods are determined for desired time period.

SPI İNDİS DEĞERLERİ	SINIFLANDIRMA	CLASSIFICATION				
2.0 ve fazla	Olağanüstü Nemli	Exceptionally Moist				
1.60 ile 1.99	Aşırı Nemli	Extremely Moist				
1.30 ile 1.59	Çok Nemli	Very Moist				
0.80 ile 1.29	Orta Nemli	Moderately Moist				
0.51 ile 0.79	Hafif Nemli	Abnormally Moist				
0.50 ile -0.50	Normal Civarı	Near Normal				
-0.51 ile -0.79	Hafif Kurak	Abnormally Dry				
-0.80 ile -1.29	Orta Kurak	Moderately Dry				
-1.30 ile -1.59	Şiddetli Kurak	Severely Dry				
-1.60 ile -1.99	Çok Şiddetli Kurak	Extremely Dry				
-2.0 ve düşük	Olağanüstü Kurak	Exceptionally Dry				

2012 October - 2013 September (12 Months) Drought Map According to SPI

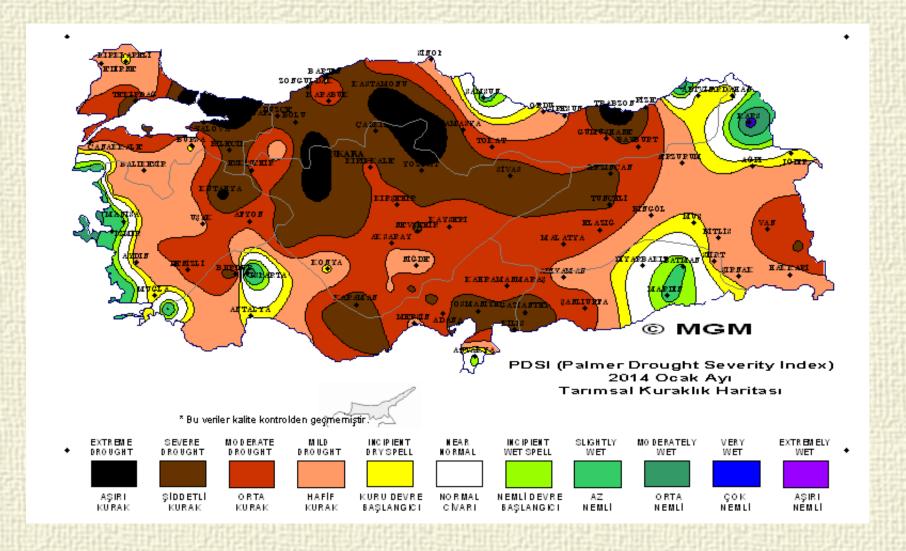
Percent of Normal Index (PNI)


It is the most simple drought index. It is calculated this way: actuel precipitation divided by normal precipitation and multiplied by 100 for a certain time peiod. Precipitation shortage in different time periods (monthly or yearly) can be calculated.

Number of Months Analyzed	Normal (% of Normal Precipitation)	Watch (% of Normal Precipitation)	Warning (% of Normal Precipitation)	Emergency (% of Normal Precipitation)
1	>75.0	75.0	65.0	55.0
3	>75.0	75.0	65.0	55.0
6	>80.0	80.0	70.0	60.0
9	>83.5	83.5	73.5	63.5
12	>85.0	85.0	75.0	65.0

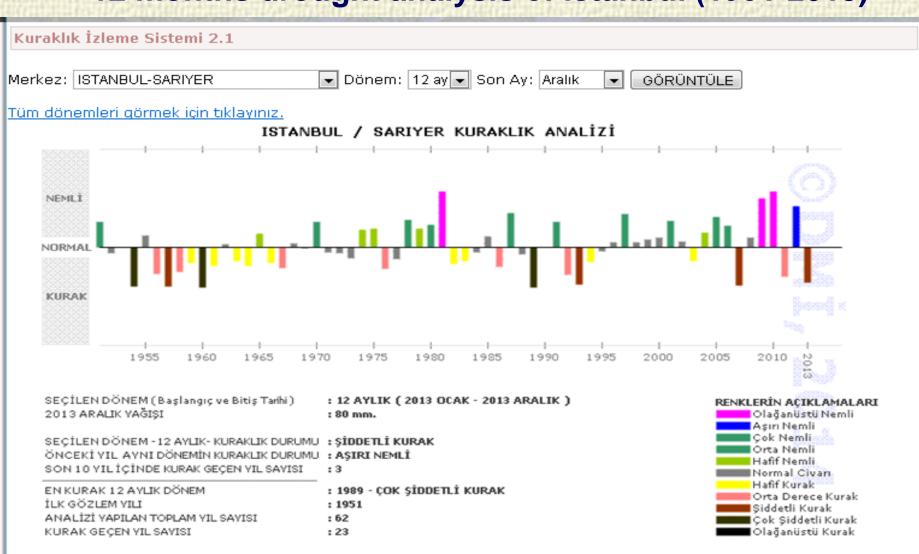
2012 October-2013 September (12 Months) Drought Map According to PNI

Palmer Drought Severity Index (PDSI)


A measurement of dryness based on recent precipitation and temperature. It is based on a supply-and-demand model of soil moisture. Supply is comparatively straightforward to calculate, but demand is more complicated as it depends on many factors - not just temperature and the amount of moisture in the soil but hard-to-calibrate factors including evapotranspiration and recharge rates.

	CLASSICIFATION	SINIFLANDIRMA
4 veya daha fazla	Extremely Wet	Aşırı Nemli
3.00 - 3.99	Very Wet	Çok Nemli
2.00 - 2.99	Moderately Wet	Orta Nemli
1.00 - 1.99	Slightly Wet	Az Nemli
0.50 - 0.99	Incipient Wet Spell	Nemli Devre Başlangıcı
0.490.49	Near Normal	Normal Civarı
-0.500.99	Incipient Dry Spell	Kuru Devre Başlangıcı
-1.001.99	Mild Drought	Hafif Kurak
-2.002.99	Moderate Drought	Orta Kurak
-3.003.99	Severe Drought	Şiddetli Kurak
-4.00 veya daha az	Extreme Drought	Aşırı Kurak

2014 January Drought Map According to PALMER


Drought Monitoring System (KIS 2.1)

- ➤ Drought Monitoring System (SPS 2.1) is a software created with the purpose of drought monitoring on a monthly basis. Standardized Precipitation Index (SPI) is used in order to monitor the drought.
- ➤ System shows long term drought of the station (Max. 65 years). You can choose any period of the year for different durations (3, 6, 9, 12 and 24 months). It calculates the drought value of the selected period of the years.
- The bars which under the horizontal axis indicates dry seasons, and the bars which above the horizontal axis indicates the wet periods. Meanings of the colours are shown at the right side of the page.
- > The driest year, number of the dry years, the status of the last year and other informations are given by the system.

12 months drought analysis of İstanbul (1951-2013)

AGRICULTURAL DROUGHT COMBATING STRATEGY AND ACTION PLAN

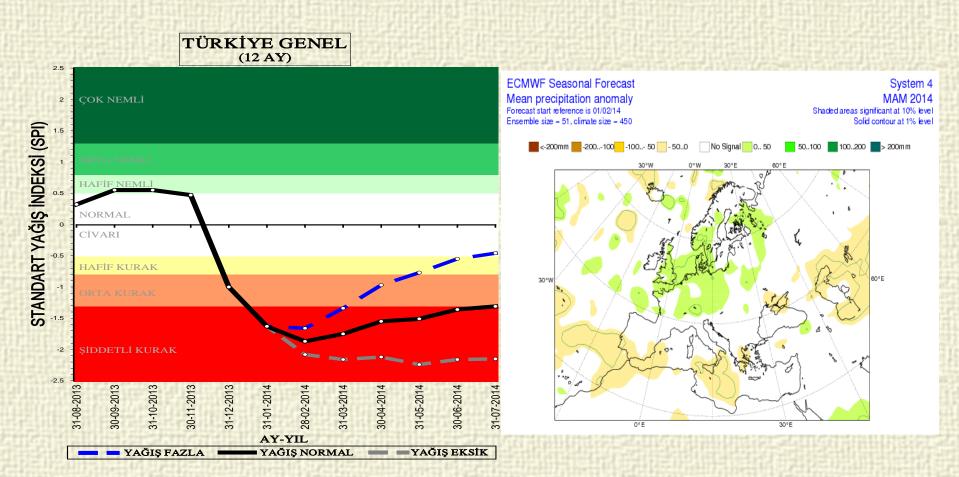
T.C. TARIM VE KÖYİŞLERİ BAKANLIĞI

TÜRKİYE
TARIMSAL KURAKLIKLA MÜCADELE
STRATEJİSİ VE EYLEM PLANI
(2008-2012)

T.C.

GIDA, TARIM VE HAYVANCILIK BAKANLIĞI TÜRKİYE TARIMSAL KURAKLIKLA MÜCADELE STRATEJİSİ VE EYLEM PLANI (2013-2017)

Main Strategy to Combat Agricultural Drought;


- > To improve an institutional structure having sufficient capacity,
- To realize combat under an integrated and comprehensive plan,
- ➤ To establish a structure for agricultural sector to ensure it to be least affected by drought.
- Under Agricultural Drought Combating Strategy and Action Plan;
- Monitoring, Early Warning and Estimation Committee,
- Risk Assessment Committee,
- > Data Flow Unit has been established at Central Authority.
- Also Agricultural Drought Provincial Crisis Centers have been established in each province.

AGRICULTURAL DROUGHT COMBATING STRATEGY AND ACTION PLAN

Drought risk assesment for future 6 months by using SPI and ECMWF seasonal forecast

Definition

- ➤ Gathering total temperature whom crops require to complete standard grow and development in a life time, forecasting of harvest date by the aid of this temperature value,
- Can be used to calculate the vegetative period required to be able to determine suitable sowing regions of crops in our country.
- For the purpose, "Forecasting of Harvest Date" program is developed and is presented to the related people on the institutional webpage.

FORECASTING OF HARVEST DATE

Forecasting of Harvest Date Program

HASAT ZAMANI TAHMIN

ETKİLİ SICAKLIK TOPLAMI---BÜYÜME DERECE-GÜN (Growing Degree-Day)

Sonuçlar

İl - İlçe ANKARA - POLATLI

Denizden Yükseklik 886m

Bitki Türü - Çeşiti Bugday - Kışlık(Taban:3°C,Tavan:30°C)

Toplam Sıcaklık İsteği 2000°C
Gerçekleşen Toplam Sıcaklık 479°C
Kalan Toplam Sıcaklık 1526°C
Gerçekleşen Vejetasyon Süresi 140 Gün
Kalan Vejetasyon Süresi 149 Gün
Toplam Vejetasyon Süresi 289 Gün
Başlangıç/Ekim Tarihi 01.10.2013
Bitis/Hasat Tarihi 17.7.2014

Seçtiğiniz Bugday bitkisi için tahmini hasat zamanı başlangıcı 17 Temmuz 2014 tarihidir.

< Ana Sayfaya Dön

Bilgi / Öneri : arastirmaweb@mgm.gov.tr

Araştırma Dairesi Başkanlığı 2012

FROST EARLY WARNING SYSTEM

- > Studies of frost warnings start with early fall frosts and end with late spring frosts.
- Risk maps of agricultural frost for 4-days are prepared and published on institutional website everyday.
- ➤ To this end, "Frost Early Warning System" program is developed and presented on the institutional webpage for the people whom concern.

FROST EARLY WARNING SYSTEM

Frost Early Warning System

Zirai Do	on Uyarı	Sistemi	(ZDUS 2.0)																
İl:	ERZINCAN	l		•		ER	RZIN	ICAN	N_N	1ERI	KEZ.	_							
İlçe:	_MERKEZ_	_		•	En Di										6				
Bitki:	BADEM			•	Düşük						<u>@</u> _	•0		a /				Ð.	•
Safha:	ÇİÇEKLEN	IME		•			9	2	\a	<u>,</u> @		`	2				10		
		Kritik Sıc	aklık: <mark>-1</mark>		Sıcaklıklar	ø			- - - - -	-5	-5	-4	-5	-5	-4	-5	-5	-5	-5
(Be	Zirai Don Ri klenen En Di		klar)			-5 10	-7 H) <u>12</u>	13	14	15	16	17	18	19	20	21	22	23
20 Şubat	_	22 Şubat	23 Şubat			Şubat	Şubat	Şubat	Şubat	Şuba	Şuba	Şuba	Şuba	Şuba	Şuba	Şubat	Şuba	Şuba	Şubat
0°C	-1°C	1°C	0°C		3ünceller	-		Gerç	ekleş	enler		. Т				— Ме			

<u>Dondan Korunma Yöntemleri İçin Tıklayınız.</u>

Renklerin Anlamları

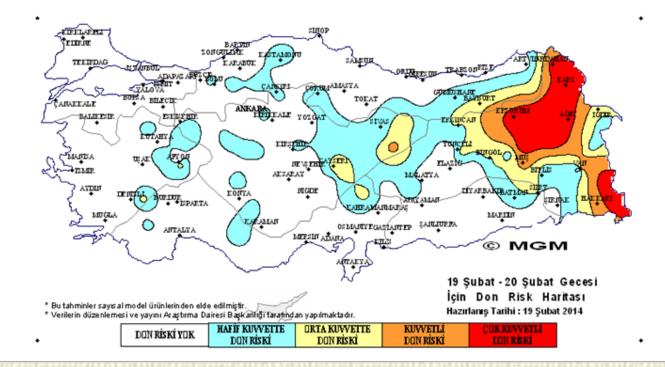
Bitki ve Safha Seçilmedi Don Riski Yok Don Riski Yar

Bilgi ve Öneri İçin: <u>arastirmaweb@mqm.qov.tr</u> Ankara 2011

Önemli Not

- Tahmin edilen minimum sıcaklıklar 2 metre yükseklikte, kapalı siper içindeki sıcaklıklardır. Açık toprak üzerinde ölçülen minimum sıcaklılar daha düşük olarak gerçekleşmektedir.
- Tahminler meteoroloji istasyonu bulunan yerler için yapılmaktadır. İstasyon ağımız genişledikçe diğer ilçeler de sisteme dahil edilecektir.
- 3. Bitkiler için verilen kritik sıcaklıklar BM. Gıda ve Tarım Örgütü (FAO) ile Türkiye'de yapılan araştırma sonuçlarından alınmıştır. Bu değerler bitki tür ve çeşidine göre değişmektedir.
- 4. Sıcaklıklar, arazinin yüksekliğine, yönüne, eğimine, rüzgardan etkilenme duruma göre önemli değişiklikler gösterdiğinden, üreticilerimizin arazilerindeki sıcaklığı termometre ile takip etmeleri tavsive olunur.

FROST EARLY WARNING SYSTEM

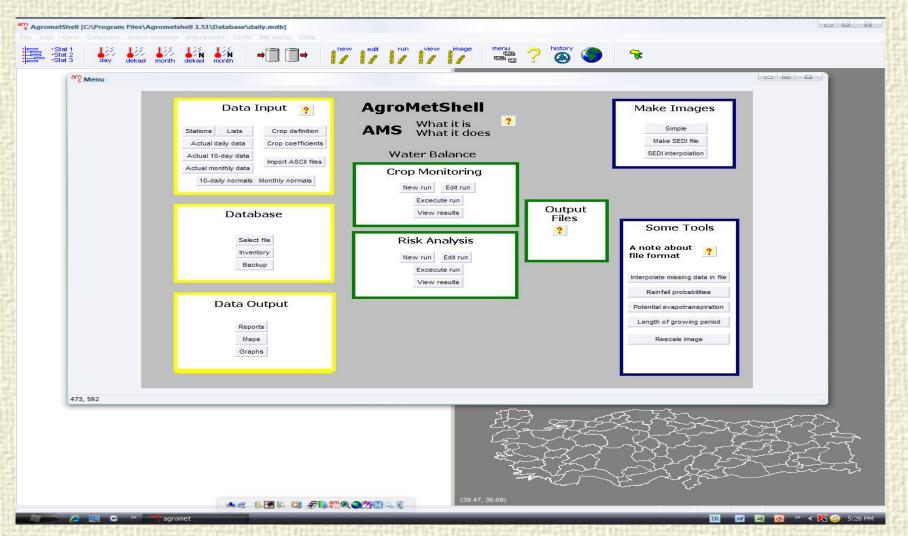


Frost Risk Maps (4 Days)

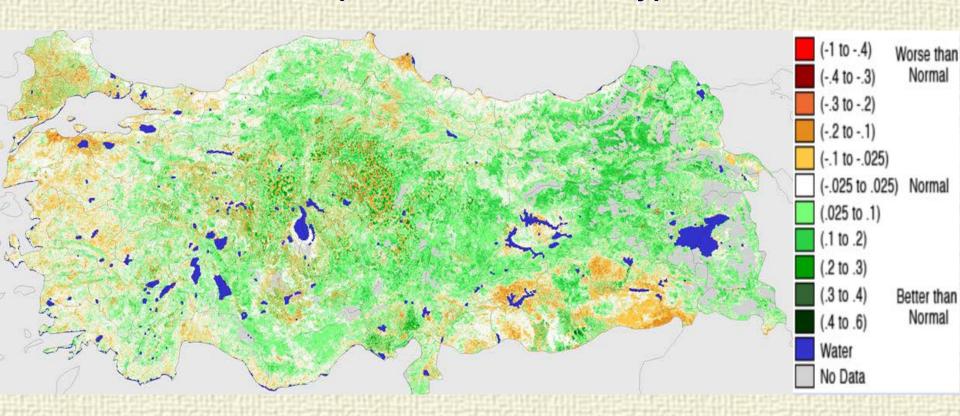
Zirai Don Uyarı Sistemi

Zirai Don Uyarı Sistemi <mark>4 Günlük Zirai Don Risk Tahmin Haritaları Türkiye Don Takvimi</mark> Don Olayından Korunma Yöntemleri Zirai Don Hadisesinde Kritik Saatler Don Tahmini Açıklaması

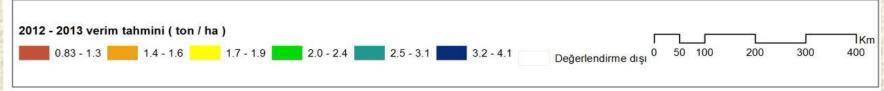
4 Günlük Zirai Don Risk Tahmin Haritaları / 2 m.


Simulation Model (AgroMetShell)

- Strengthening the Crop Yield and Production Forecasting Capability - (TCP/TUR/3002) supported by FAO, successfully carried on from 2005 to 2006 and completed as a cooperative study between Turkish State Meteorological Service and Ministry of Food, Agriculture and Livestock.
- ➤ The background required for crop monitoring and yield forecast is created after project conclusion. Yield forecast of 2007 is also completed into this extent and is published on the institutional webpage as a bulletin.


AgroMetShell(AMS) 1.51 Version Homepage

Comparison NDVI map of 2013 and normals (between 9 to 24 May)



Yield Forecast Map for Winter Wheat (2013)

IRRIGATION PLANNER SYSTEM

Definition

- Program was developed for planning of irrigation time which is used by farmers and reserchers as desicion support system.
- Daily rainfall and reference evapotranspiration values used as input to calculate daily water balance.
- ➤ Evapotranspiration is the sum of evaporation from surface and transpiration from leaves which is calculated by FAO Penman-Monteith Formula.

IRRIGATION PLANNER SYSTEM

The last column shows the water budget and water deficit

SU BÜTÇESİ-SULAMA PLANLAMA TABLOSU

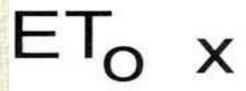
Gün	Ау	Yil	Gün Sayısı	Yağış (mm)	Kümülatif Yağış (mm)	Referans Kümülatif Referans Evapotranpirasyon (mm) Evapotranpirasyon (mm)		Su Bütçesi (mm)
17	2	2014	1	0	0	1,5	1,5	-1,5
16	2	2014	2	3,9	3,9	1,3	2,9	1,0
15	2	2014	3	0,5	4,4	1,0	3,8	0,6
14	2	2014	4	0	4,4	1,9	5,7	-1,3
13	2	2014	5	0	4,4	1,9	7,6	-3,2
12	2	2014	6	0	4,4	0,0	7,6	-3,2
11	2	2014	7	0,5	4,9	1,4	8,9	-4,0
10	2	2014	8	1,8	6,7	1,0	9,9	-3,2
9	2	2014	9	0	6,7	1,1	11,0	-4,3
8	2	2014	10	0	6,7	1,4	12,4	-5,7
7	2	2014	11	0	6,7	1,2	13,6	-6,9
6	2	2014	12	0	6,7	1,2	14,8	-8,1
5	2	2014	13	0	6,7	1,2	16,0	-9,3
4	2	2014	14	0	6,7	1,0	17,0	-10,3

NORMALS OF REFERENCE EVAPOTRANSPIRATION

- ➤ There are many theoretical and empirical equations around the world to estimate ETo. The choice of any one method depends on the accuracy of the equation under a given condition and the availability of the required data. For reference surfaces with known biophysical properties, the main factors affecting ETo include solar radiation, relative humidity/vapor pressure, air temperature, and wind speed. Therefore, ETo can be estimated quite accurately using a "model" (a series of complex mathematical equations).
- ➤ We used FAO Penman-Monteith equation in order to calculate ETo for TURKEY. The AgroMetShell model was worked for 257 weather stations by using daily weather data. The weather data used between 1981 to 2011. By using these data, monthly and yearly normals of ETo were calculated and maps were drawn.

NORMALS OF REFERENCE **EVAPOTRANSPIRATION**

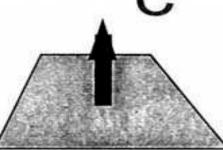
Reference Evapotranspiration


Radiation Temperature Wind speed Humidity

grass reference crop

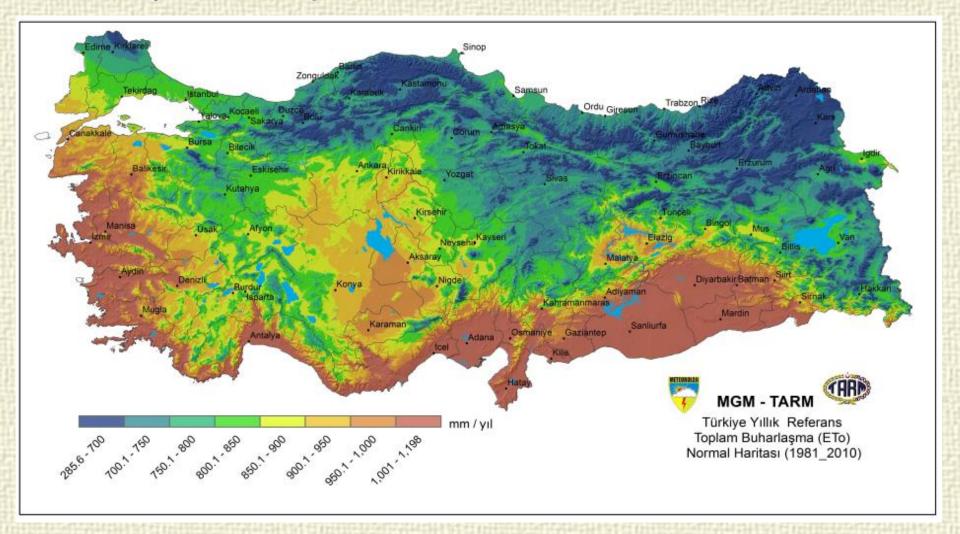
well watered grass

K_c factor



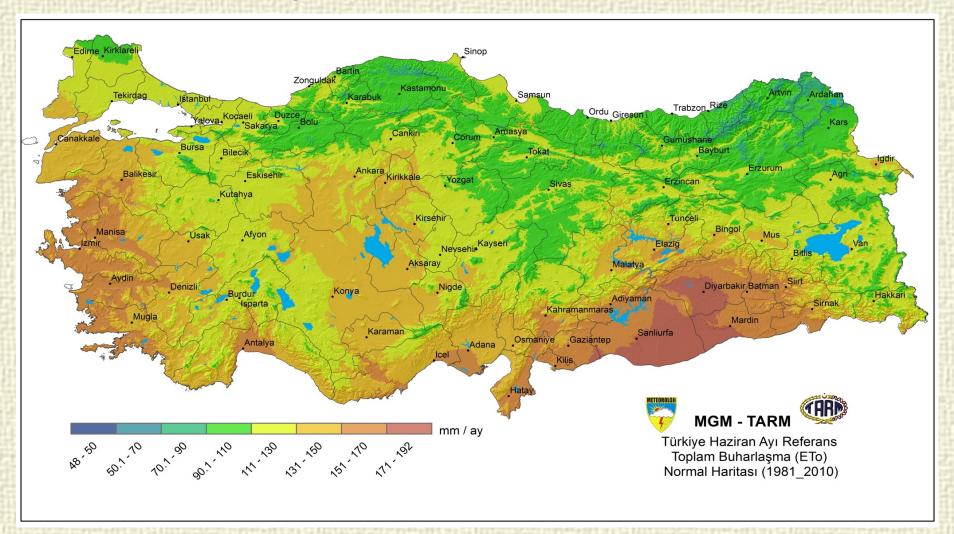
well watered crop

optimal agronomic conditions

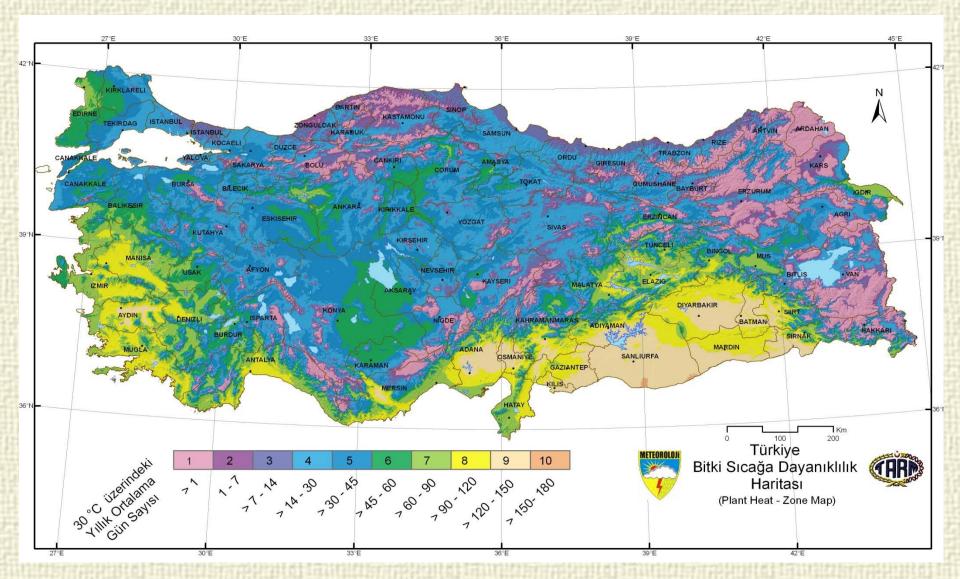


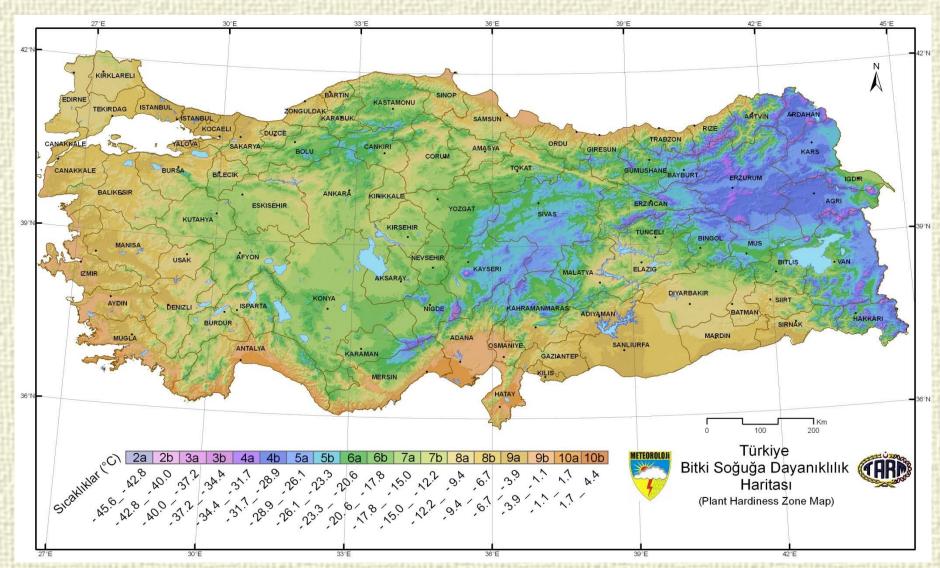
NORMALS OF REFERENCE EVAPOTRANSPIRATION

Yearly Normal Map of Grass Reference ETo for TURKEY



NORMALS OF REFERENCE EVAPOTRANSPIRATION




June Normal Map of Grass Reference ETo for TURKEY

- Many factors influence which plants will thrive in a given location.
 Heat, cold, and elevation are just a few that can have a big impact.
 If you're trying to figure out which plants to use in your garden, check out the maps below that designate plant zones based on various important factors.
- Heat Zone Map:
- The American Horticultural Society's Plant Heat Zone Map divides the country into zones based on average high temperatures.
- Hardiness Zone Map:
- The U.S. Department of Agriculture offers an interactive map that divides regions based on average minimum temperatures.

HEAT AND HARDINESS ZONE MAPS WETEOROLOGIC T.C. Orman ve Su Işleri Bakarılığı HEAT AND HARDINESS ZONE MAPS T.C. OFFINANCE SU Işleri Bakarılığı HEAT AND HARDINESS ZONE MAPS T.C. OFFINANCE SU Işleri Bakarılığı HEAT AND HARDINESS ZONE MAPS T.C. OFFINANCE SU Işleri Bakarılığı HEAT AND HARDINESS ZONE MAPS T.C. OFFINANCE SU Işleri Bakarılığı HEAT AND HARDINESS ZONE MAPS T.C. T.C. OFFINANCE SU Işleri Bakarılığı HEAT AND HARDINESS ZONE MAPS T.C. T.C. OFFINANCE SU Işleri Bakarılığı HEAT AND HARDINESS ZONE MAPS T.C. T.C. T.C. OFFINANCE SU Işleri Bakarılığı HEAT AND HARDINESS ZONE MAPS T.C.

HEAT AND HARDINESS ZONE MAPS

TÜRKİYE İL MERKEZLERİ BİTKİ SOĞUĞA DAYANIKLILIK TABLOSU

c.se	SICAKLIKLAR		
BOLGE	(°C)	(°F)	İLLER
4a	-31.734.4	-2530	Ağrı
4b	-28.931.7	-2025	Ardahan, Erzurum
5a	-26.128.9	-1520	Kars, Muş
5b	-23.326.1	-1015	
6a	-20.623.3	-510	Bayburt, Kayseri, Sivas
6b	-17.820.6	05	Erzincan, Gümüşhane, Karaman
7a	-15.017.8	5_0	Afyonkarahisar, Aksaray, Bingöl, Bitlis, Bolu, Çorum, Eskişehir, Hakkari, Iğdır, Kastamonu, Kırşehir, Konya,Nevşehir, Niğde, Tunceli, Van, Yozgat
7b	-12.215.0	10_5	Ankara, Çankırı, Diyarbakır, Elazığ, Kırıkkale, Kütahya, Tokat, Isparta,
8a	-9.412.2	15_10	Amasya, Bartın, Batman, Burdur, Düzce, Edirne, Karabük, Kırklareli, Malatya, Uşak,
8b	-6.79.4	20_15	Artvin, Balıkesir, Bilecik, Bursa, Gaziantep, Mardin, Siirt, Şırnak, Tekirdağ
9a	-3.96.7	25_20	Adıyaman, Çanakkale, Denizli, Kocaeli, Kilis, Manisa, K.Maraş, Muğla, Osmaniye, Sakarya, Şanlıurfa, Yalova
9b	-1.13.9	30_25	Adana, Aydın, Giresun, Hatay, İstanbul, İzmir, Ordu, Rize, Samsun, Sinop, Trabzon, Zonguldak
10a	1.71.1	35_30	Antalya, Mersin

TÜRKİYE İL MERKEZLERİ BİTKİ SICAĞA DAYANIKLILIK TABLOSU

BOLGE	GÜN SAYISI	İLLER
2	1 - 7	Ardahan, Giresun, Samsun, Sinop Trabzon, Zonguldak
3	> 7 - 14	Erzurum, Kars, Ordu, Tekirdağ, Van, Yozgat
4	> 14 - 30	Artvin, Bartın, Bayburt, Bolu, İstanbul, Kastamonu, Nevşehir, Sivas, Yalova
5	> 30 - 45	Afyonkarahisar, Ağrı, Ankara, Bilecik, Bitlis, Çanakkale, Çorum, Düzce, Eskişehir, Gümüşhane, Hakkari, Kırşehir, Kocaeli, Kütahya, Niğde, Sakarya, Tokat
6	> 45 - 60	Aksaray, Balıkesir, Bursa, Çankırı, Erzincan, Isparta, Karaman, Kayseri, Kırıkkale, Kırklareli, Konya, Uşak
7	> 60 - 90	Amasya, Bingöl, Burdur, Edirne, Elazığ, Iğdır, İzmir, Malatya, Mersin, Muğla, Muş, Şırnak
8	> 90 - 120	Antalya, Denizli, Gaziantep, Hatay, Kahramanmaraş, Manisa, Mardin, Siirt, Tunceli
9	> 120 - 150	Adana, Adıyaman, Aydın, Batman, Diyarbakır, Kilis, Osmaniye, Şanlıurfa

- ➤ The products which are results of the studies in Research Department are combined as a monthly bulletin and published on the institutional webpage.
- ➤ This bulletin includes precipitation, temperature, drought and extreme events analysis, crop monitoring and yield forecasting and regional reports of agricultural situation.
- Everyone can appreciate all of the analysis of last month in one bulletin.

AGROMETEOROLOGICAL BULLETIN

Agrometeorological Bulletin

METEOROLOJİ GENEL MÜDÜRLÜĞÜ ARAŞTIRMA DAİRESİ BAŞKANLIĞI

AYLIK ZİRAİ METEOROLOJİ BÜLTENİ

Says: 93 Kasım 2013 Tasarım-Düzenleme: **Murat YICDIRIM**

YAĞIŞ DEĞERLENDİRMESİ

2013 YILI EKİM AYI YAĞIŞ RAPORU

GENEL DURUM:

Yağışlar genel olarak normalinden ve geçen yıl Ekim ayı yağışından fazla olmuştur.

Ekim ayı yağış ortalaması 62,0 mm, normali 59,6 mm ve 2012 Ekim ayı yağış ortalaması ise 54,9 mm'dir. Yağışlarda normaline göre % 4,0 geçen yıl Ekim ayı yağışına göre ise % 12,9 artış gözlenmiştir.

MARMARA BÖLGESİ:

Bölge yağış ortalaması 87,9 mm, normali 72,4 mm, 2012 Ekim ayı yağışı ise 81,1 mm'dir. Yağışlarda normaline göre % 21,4 geçen yıl Ekim ayı yağışına göre ise % 8,3 artış gözlenmiştir.

EGE BÖLGESİ:

Bölge yağış ortalaması 79,7 mm, normali 42,3 mm, 2012 Ekim ayı yağışı ise 43,4 mm'dir. Yağışlarda normaline göre % 88,6 geçen yıl Ekim ayı yağışına göre ise % 83,7 artış gözlenmiştir.

AKDENİZ BÖLGESİ:

Bölge yağış ortalaması 62,2 mm, normali 59,8 mm, 2012 Ekim ayı yağışı ise 75,2 mm'dir. Yağışlarda normaline göre % 4,1 artış, geçen yıl Ekim ayı yağışına göre ise % 17,3 azalma gözlenmiştir.

THANKS...

Dr. Osman ŞİMŞEK

osimsek@mgm.gov.tr